NEMETSCHEK Scia

Theory

Engineer

Pad Foundations according to EN 1997-1

All information in this document is subject to modification without prior notice. No part or this manual may be reproduced, stored in a database or retrieval system or published, in any form or in any way, electronically, mechanically, by print, photo print, microfilm or any other means without prior written permission from the publisher. SCIA is not responsible for any direct or indirect damage because of imperfections in the documentation and/or the software.

© Copyright 2009 SCIA. All rights reserved.

Table of contents	
Version Information	1
Introduction	1
Pad Foundation Check	2
Determination of Design Values	3
Determination of Effective Geometry	5
Weight G	7
Distances gx & gy	8
Effective Geometry	8
Bearing Check	9
Undrained Bearing Resistance	9
Drained Bearing Resistance	10
Known Soil Capacity Bearing Resistance	12
Sliding Check	13
Eccentricity check	
Uplift Check	
Annex: Pad Foundation Stiffness	16
References	17

Version Information

Welcome to the Theoretical Background for Pad Foundations according to EN 1997-1. This document provides background information regarding the Pad Foundation checks.

Version info

Document Title	Theoretical Background – Pad Foundations according to EN 1997-1
Release	2010.0
Revision	11/2009

Introduction

In this Theoretical Background, in depth information is given regarding the Pad Foundation checks according to EN 1997-1.

The checks are executed according to the following codes:

EN 1997-1:2004 Eurocode 7: Geotechnical design – Part 1: General rules CEN, 2004.

EN 1997-1:2004/AC:2009 Correction Sheet Eurocode 7: Geotechnical design – Part 1: General rules CEN, 2009.

The annex to this Theoretical Background specifies the calculation of the stiffness factors of a Pad Foundation.

Pad Foundation Check

In this chapter the different steps of the Pad Foundation Checks are specified.

First of all, the required safety and resistance factors need to be determined depending on the chosen Design Approach.

Using these safety factors, the vertical design loading V_d , horizontal design loading H_d and effective geometry of the pad are determined.

Based on this effective geometry the different checks are executed. The above steps are detailed in the following paragraphs.

Determination of Design Values

The Pad Foundation check is executed for a Result Class.

Depending on the **Design Approach** set in the National Annex Setup, the sets of safety factors are read from the setup as follows:

- For **Design Approach 1** the safety sets depend on the combination type. For combinations of type **EN-ULS (STR/GEO) Set B** sets **M1 & R1** are used.

For combinations of type **EN-ULS (STR/GEO) Set C** sets **M2** & **R1** are used. For any other combination sets **M1** & **R1** are used.

- For Design Approach 2, in all cases sets M1 & R2 are used.
- For **Design Approach 3**, in all cases sets **M2** & **R3** are used.
- For detailed information regarding the different combination types, reference is made to EN 1990 [Ref.4]

In case the functionality 'Subsoil' is activated in the Project Data a new class 'GEO' is generated automatically for use in the Pad Foundation check.

This class contains all combinations of the following types: EN-ULS (STR/GEO) Set B EN-ULS (STR/GEO) Set C A Result Class may also contain load cases or non-linear combinations. These are seen as 'Any combination' for the check.

For Design Approach 1 the class for which the check is executed needs to contain at least one combination of each of the following types: EN-ULS (STR/GEO) Set B EN-ULS (STR/GEO) Set C

In case the class for which the user wishes to execute the check does not comply with this requirement, the check is not executed and a warning is shown instead.

For Design Approaches 2 & 3 there is no requirement for the content of the class.

Using the above information, the design values for the soil properties are determined:

Design Value	Formula		
φ_d'	$= \operatorname{atan}\left[\frac{\operatorname{tan}(\varphi')}{\gamma_{\varphi'}}\right]$		
	With: φ' read from Subsoil Library		
	$\gamma_{w'}$ read from National Annex Setup		
c'_d	C'		
	$\gamma_{c'}$		
	With: c' read from Subsoil Library		
	$\gamma_{c'}$ read from National Annex Setup		
C _{ud}	$=\frac{c_u}{c_u}$		
	γ _{cu}		
	With: c _u read from Subsoil Library		
	γ_{cu} read from National Annex Setup		
γ_{d}^{\prime}	$=rac{\gamma'}{\gamma_{\gamma}}$		
	With: γ' specific weight read from Library		
	γ_{γ} read from National Annex Setup		
$\gamma_{Backfill,d}$	$=\frac{\gamma_{Backfill}}{\gamma}$		
	With: γ_{Backfill} weight read from Pad foundation input Data		
	γ_{γ} read from National Annex Setup		

A final safety factor which needs to be determined concerns the safety factor for the weight of the pad foundation and the backfill material. This safety factor is taken as the safety factor for the first permanent load case for the combination under consideration i.e. γ_{G} .

In case a combination does not have a permanent load case, γ_G is taken as 1,00.

Determination of Effective Geometry

The next step in the check concerns the determination of the effective geometry of the pad foundation.

The following picture illustrates the different actions working on the foundation.

In this picture the following notations are used:

Action	Info	
G	Weight of the foundation and of any backfill material inside the area of abcd.	
g	Load application point for load G referenced to the center point of the foundation base	
Р	Vertical Rz reaction of the support	
р	Load application point for load P referenced to the center point of the foundation base.	
	This is read as the load eccentricities ex and ey from the Pad Foundation library.	
н	Horizontal Rx or Ry reaction of the support	
h	=(h1 + h2)	
	Load application point of the horizontal load H referenced to the foundation base.	
	With h1 and h2 read from the Pad Foundation Library.	

М	Moment Mx or My reaction of the support	
V _d	= G + P	
	Ultimate load vertical to the foundation base including the weight of the foundation and any backfill material.	
е	Load application point for load \boldsymbol{V}_d referenced to the center point of the foundation base	

Using the Support Reaction Elimination factors defined in the Geotechnics Setup the reaction forces Rx, Ry, Rz, Mx, My can be modified.

These factors can be used in case the user for example models only a pad foundation and omits other foundation elements like a ring beam. The user can then specify that for example only 50% of a reaction should be used to design the pad foundation since the other 50% goes into the ring beam.

The eccentricity **e** is calculated as follows:

$$e = \frac{M + G * g + H * h - P * p}{V_d}$$

For a general 3D case this formula is written as:

$$e_x = \frac{M_y + G * g_x + H_x * h - P * p_x}{V_d}$$

$$e_y = \frac{M_x + G * g_y + H_y * h - P * p_y}{V_d}$$

Weight G

The weight G consists of three parts:

1) The weight of the foundation block, **G**_{Block}

This depends on the shape of the block (prismatic or pyramidal), dimensions and also the density γ_{Block} of the block material.

The density of the block depends on the Water table level.

Water level	Block Density
No influence	γBlock
at foundation base	γBlock
at ground level	$(\gamma_{\text{Block}} - \gamma_{\text{W}})$

The Water Density γ_W is taken as $9{,}81~kN/m^3$

2) The weight of the backfill around h2, GBackfill,Around

This depends on the shape of the block (prismatic or pyramidal), dimensions and also the density of the backfill material.

The backfill density $\gamma_{\text{Backfill},d}$ is specified in Determination of Design Values

The density of the backfill depends on the Water table level.

Water level	Backfill Density
No influence	γ̃Backfill.d
at foundation base	γBackfill.d
at ground level	(γ _{Backfill,d} – γ _W)

The Water Density γw is taken as 9,81 kN/m³

3) The weight of the backfill above the foundation block, GBackfill, Above

This depends on the height and density of the backfill as specified in the input of the Pad Foundation.

Note that the height of the backfill material can also be negative. A negative value is used to indicate that the soil is lower than the top of the foundation block.

The three parts are illustrated on the following picture:

The design value of the total weight G can then be calculated as follows:

 $G_{d} = \gamma_{G} * [G_{Block} + G_{Backfill,Around} + G_{Backfill,Above}]$

With γ_G the safety factor of the permanent loading for the combination under consideration, as defined in Determination of Design Values.

Distances gx & gy

Using the weight and the volume, the center of gravity of the block and backfill are determined. The distances gx and gy are then calculated from this centroid to the center point of the foundation base.

Effective Geometry

As a final step, using the eccentricities ex and ey the effective geometry of the foundation base is calculated as follows:

L1 = A - 2 * |ex|L2 = B - 2 * |ey|With A & B read from the Pad Foundation library.

B' = min (L1 ; L2) L' = max (L1 ; L2) A' = B' * L'

B In case B' < 0 m or L' < 0 m the geometry is incorrect.</p>

In this case, the check is not executed and a warning is given on the output

Bearing Check

The Bearing check is executed according to EN 1997-1 art. 6.5.2 and Annex D [Ref.1]

 $V_d \leq R_d$

The Bearing resistance \mathbf{R}_{d} depends on the fact if the soil condition is drained or undrained.

In case the user 'knows' the soil capacity, for example from a geotechnical report, R_d can be read directly from the input data instead of calculated.

Undrained Bearing Resistance

The formulas in this paragraph are used in case the **Type** field in the Subsoil Library is set to **Undrained**.

The design value of the undrained bearing resistance is calculated as follows:

$$R_{d} = \frac{\left[(\pi + 2) * c_{ud} * b_{c} * s_{c} * i_{c} + q\right] * A'}{\gamma_{R,\nu}}$$

Value	Formula		
C _{ud}	As specified in Determination of Design Values		
b _c	Inclination of the foundation base (always horizontal base)		
	= 1,00		
Sc	Shape of the foundation (rectangular shape)		
	$= 1 + 0.2 * \frac{B'}{L'}$		
i _c	Inclination of the load, caused by horizontal load H_d		
	$=\frac{1}{2}\left[1+\sqrt{1-\frac{H_d}{A'*c_{ud}}}\right]$		
	and $H_d \le A' * c_{ud}$		
	in case $H_d > A' * c_{ud}$ the value of i_c is set to 0,5		
H _d	Resulting horizontal load		
	$=\sqrt{H_x^2 + H_y^2}$		
H _x	Horizontal support reaction Rx as defined in Determination of Effective Geometry		
H _v	Horizontal support reaction Ry as defined in Determination of Effective Geometry		
B'	Effective width as defined in Determination of Effective Geometry		
L'	Effective length as defined in Determination of Effective Geometry		
A'	Effective area as defined in Determination of Effective Geometry		

q	Overburden at the foundation base [Ref.5]
	=(h1 + h2 + h _{backfill})* γ _{Backfill,d}
	With:
	h1 & h2 read from the Pad Foundation Library
	h _{backfill} read from the Pad Foundation input
	$\gamma_{\text{Backfill,d}}$ as defined in Determination of Design Values
γ _{R,v}	Resistance factor read from the National Annex Setup

Drained Bearing Resistance

The formulas in this paragraph are used in case the **Type** field in the Subsoil Library is set to **Drained**.

The design value of the drained bearing resistance is calculated as follows:

$$R_{d} = \frac{\left[c'_{d} * N_{c} * b_{c} * s_{c} * i_{c} + q'_{d} * N_{q} * b_{q} * s_{q} * i_{q} + 0.5 * \gamma'_{d} * B' * N_{\gamma} * b_{\gamma} * s_{\gamma} * i_{\gamma}\right] * A'}{\gamma_{R,\nu}}$$

Value	Formula		
c _d '	As specified in Determination of Design Values		
N _c	Bearing resistance factor		
	$= (N_q - 1) * \cot(\varphi'_d)$		
N _q	Bearing resistance factor		
	$= e^{\pi * \tan{(\varphi'_d)}} * \tan^2{(45 + \frac{\varphi'_d}{2})}$		
Νγ	Bearing resistance factor		
	$= 2 * (N_q - 1) * \tan(\varphi'_d)$		
b _c	Inclination of the foundation base (always horizontal base)		
	= 1,00		
b _q	Inclination of the foundation base (always horizontal base)		
	= 1,00		
b _γ	Inclination of the foundation base (always horizontal base)		
	= 1,00		
Sc	Shape of the foundation (rectangular shape)		
	$=\frac{s_q * N_q - 1}{N_q - 1}$		
s _q	Shape of the foundation (rectangular shape)		
	$= 1 + \left(\frac{B'}{L'}\right) * \sin\left(\varphi'_{d}\right)$		

Sγ	Shape of the foundation (rectangular shape)		
	$= 1 - 0.3 * \frac{B'}{I'}$		
i _c	Inclination of the load, caused by horizontal load H_d		
	$-i$ $(1-i_q)$		
	$\frac{-\iota_q - \frac{1}{N_c * \tan(\varphi'_d)}}{1 + \frac{1}{N_c + N_c + \frac{1}{N_c + \frac{1}{N_c + \frac{1}{N_c + \frac{1}{N_c + $		
i _q	Inclination of the load, caused by horizontal load ${\rm H}_{\rm d}$		
	$= \left[1 - \frac{H_d}{V_d + A' * c'_d * \cot(\varphi'_d)}\right]^m$		
iγ	Inclination of the load, caused by horizontal load H _d		
	$= \left[1 - \frac{H_d}{V_d + A' * c'_d * \cot(\varphi'_d)}\right]^{m+1}$		
m	$= m_L * \cos^2(\theta) + m_B * \sin^2(\theta)$		
m∟	$\left[2+\left(\frac{L'}{r}\right)\right]$		
	$=\frac{\left[\frac{L}{\left[1+\left(\frac{L}{2}\right)\right]}\right]}{\left[1+\left(\frac{L}{2}\right)\right]}$		
	$\begin{bmatrix} 1 + (\overline{B'}) \end{bmatrix}$		
m _B	$\left[2 + \left(\frac{B'}{L'}\right)\right]$		
	$=\frac{1}{\left[1+\left(\frac{B'}{L'}\right)\right]}$		
θ	Angle of the horizontal load H_d with the direction L'		
φ'_{d}	As specified in Determination of Design Values		
B'	Effective width as defined in Determination of Effective Geometry		
L'	Effective length as defined in Determination of Effective Geometry		
A'	Effective area as defined in Determination of Effective Geometry		
H _d	Resulting horizontal load		
	$=\sqrt{H_x^2 + H_y^2}$		
H _x	Horizontal support reaction Rx as defined in Determination of Effective Geometry		
H _y	Horizontal support reaction Ry as defined in Determination of Effective Geometry		
V _d	As specified in Determination of Effective Geometry		
q' _d	Effective overburden at the foundation base [Ref.5]		
	=(h1 + h2 + h _{backfill})* γ'_t		
	With:		
	h1 & h2 read from the Pad Foundation Library		
	h _{backfill} read from the Pad Foundation input		

	γ^{\prime}_{t} is depending on the water level as follows:		
	Water level		
	No influence	γBackfill,d	
	at foundation base	γBackfill,d	
	at ground level	$(\gamma_{\text{Backfill,d}} - \gamma_{\text{W}})$	
	$\gamma_{\text{Backfill,d}}$ as defined in Determination of Design Values		
	γ _w is taken as 9,81 kN/m³		
γ_{a}^{\prime}	Effective weight density of the s	oil below the foundation level	
	depending on the water level as follows:		
	Water level	γ'd	
	No influence	γ'd	
	at foundation base	$(\gamma'_d - \gamma_W)$	
	at ground level	$(\gamma'_{d} - \gamma_{W})$	
γ'_{d} as defined in Determination of Design Values			
	γ _w is taken as 9,81 kN/m³		
γ _{R,v}	Resistance factor read from the	National Annex Setup	

Known Soil Capacity Bearing Resistance

In case the Soil capacity is known, this value can be used directly instead of using the EN 1997-1 bearing resistance calculation outlined above.

This procedure is applied in case the checkbox **Known soil capacity, use Sigma oc** is activated in the Geotechnical Design Setup.

The design value of the bearing resistance is calculated as follows:

$$R_d = A' * \sigma_{od}$$

Value	Formula
A'	Effective area as defined in Determination of Effective Geometry
σ_{od}	Design value of the admissible soil capacity, taken as σ_{oc}
σ_{oc}	Read from the Subsoil Library

Sliding Check

The Sliding check is executed according to EN 1997-1 art. 6.5.3 [Ref.1]

$$H_d \le R_d + R_{p,d}$$

The Sliding resistance \mathbf{R}_d depends on the fact if the soil condition is drained or undrained.

The value $\mathbf{R}_{p,d}$ specifies the positive effect of the earth pressure at the side of the foundation. Since this effect cannot be relied upon, this value is taken as zero [Ref.2].

The sliding resistance is dependent on the condition of the subsoil.

a) In case the Type field in the Subsoil Library is set to Undrained.

$$R_d = \frac{A' * c_{ud}}{\gamma_{R,h}}$$

Value	Formula
C _{ud}	As specified in Determination of Design Values
A'	Effective area as defined in Determination of Effective Geometry
γR,h	Resistance factor read from the National Annex Setup

In case the checkbox **Water/air in clay subgrade** in the Subsoil Library is activated, the value of \mathbf{R}_d is limited as follows:

$$R_d \le 0,4 * V_d$$

Value	Formula
V _d	As specified in Determination of Effective Geometry

b) In case the Type field in the Subsoil Library is set to Drained.

$$R_d = \frac{V_d * \tan{(\delta_d)}}{\gamma_{R,h}}$$

Value	Formula
V _d	As specified in Determination of Effective Geometry
δ _d	Design friction angle at the foundation base

	Dependent on the Cast condition specified in the Pad Foundation Library:	
	Cast Condition	δ _d
	Prefabricated	$\frac{2}{3} * \varphi'_d$
	In situ	${\varphi'}_{d}$
φ'_{d}	As specified in Determination	of Design Values
γ̈́R,h	Resistance factor read from t	he National Annex Setup

Eccentricity check

EN 1997-1 art. 6.5.4 specifies that special precautions are required for loads with large eccentricities.

According to [Ref.3] this is done by checking if the design load is within a critical ellipse or critical diamond.

More specifically the eccentricity of the load should not exceed 1/3 or 1/6 of the width.

The maximal value of the eccentricity is defined in the Geotechnical Design Setup.

Based on the maximal value an eccentricity check is executed as follows according to [Ref.3].

a) In case the maximal eccentricity is set to 1/3

$$\left(\frac{e_x}{A}\right)^2 + \left(\frac{e_y}{B}\right)^2 \le \frac{1}{9}$$

b) In case the maximal eccentricity is set to 1/6

$$\frac{e_x}{A} + \frac{e_y}{B} \le \frac{1}{6}$$

Value	Formula
e _x	As specified in Determination of Effective Geometry
e _v	As specified in Determination of Effective Geometry
A	Read from Pad Foundation Library
В	Read from Pad Foundation Library

c) In case the maximal eccentricity is set to No limit

In this case there is no limit i.e. any eccentricity is allowed. The unity check is then set to **0,00**.

Uplift Check

In case the vertical design loading \bm{V}_d is negative, it implies that the pad foundation is in tension and may thus be 'uplifted' from the ground.

The uplift check is written out as follows:

 $|P| \leq G_d$

Value	Formula
Р	The vertical Rz reaction as specified in Determination of Effective Geometry
G _d	The weight of the foundation and any backfill as specified in Determination of Effective Geometry

B This check is executed instead of the Bearing, Sliding and Eccentricity checks.

Annex: Pad Foundation Stiffness

This annex specifies the calculation of the stiffness coefficients of a pad foundation.

Stiffness	Formula
Stiffness X	A-B-C1x
Stiffness Y	A-B-C1y
Stiffness Z	$A \cdot B \cdot C1z + 2 \cdot (A + B) \cdot \sqrt{C1z \cdot C2x} + 2 \cdot C2x$
Stiffness Rx	$B^{3} \cdot \frac{A \cdot C1z + 2 \cdot \sqrt{C1z \cdot C2x}}{6} + \frac{A \cdot B^{2} \cdot \sqrt{C1z \cdot C2x}}{2} + \frac{B^{2} \cdot C2x}{2} + A \cdot B \cdot C2x$
Stiffness Ry	$A^{3} \cdot \frac{B \cdot C1z + 2 \cdot \sqrt{C1z \cdot C2x}}{6} + \frac{B \cdot A^{2} \cdot \sqrt{C1z \cdot C2x}}{2} + \frac{A^{2} \cdot C2x}{2} + B \cdot A \cdot C2x$
Stiffness Rz	$C1y \cdot Ix + C1x \cdot Iy + \frac{h1 \cdot A^{3} \cdot C1z}{6} + \frac{h1 \cdot B^{3} \cdot C1z}{6} \dots$ $+ \frac{2 \cdot \sqrt{C1z \cdot C2x} \cdot A^{2} \cdot h1}{4} + \frac{2 \cdot \sqrt{C1z \cdot C2x} \cdot B^{2} \cdot h1}{4} + \frac{C2x \cdot A^{2}}{2} + \frac{C2x \cdot B^{2}}{2}$

With:

Parameter	
А	Dimension read from Pad Foundation library
В	Dimension read from Pad Foundation library
C1x	Soil stiffness read from Subsoil Library
C1y	Soil stiffness read from Subsoil Library
C1z	Soil stiffness read from Subsoil Library
C2x	Soil stiffness read from Subsoil Library
lx	$\frac{A \cdot B^3}{12}$
ly	$\frac{\mathbf{B} \cdot \mathbf{A}^3}{12}$

References

[1]	EN 1997-1 <i>Eurocode 7: Geotechnical design – Part 1: General rules</i> CEN, 2004.
[2]	Frank R., Baudoin C., Driscoll R., Kavvadas M., Krebs Ovesen N., Orr T., Schuppener B., <i>Designer's Guide to EN 1997-1 Eurocode 7: Geotechnical</i> <i>design – Part 1: General rules</i> , Thomas Telford, 2004.
[3]	Schneider KJ., Bautabellen für Ingenieure, 13. Auflage, Werner Verlag, 1998.
[4]	EN 1990, Eurocode – Basis of Structural Design, CEN, 2002.
[5]	Lambe T., Whitman R., <i>Soil Mechanics</i> , MIT, John Wiley & Sons, Inc, 1969.
[6]	EN 1997-1:2004/AC:2009 Correction Sheet Eurocode 7: Geotechnical design – Part 1: General rules CEN, 2009.