Vypočtené výsledky pro 2D dílce

Vnitřní síly

Hlavní momenty - deska

Popisek

Popis

Výpočet

m1

Hlavní moment (max)

m2

Hlavní moment (min)

Alfa (ohyb)

Úhel hlavního momentu m1

mtmax

Maximální krouticí moment

vmax (ohyb)

Maximální smyková síla kolmá k rovině

beta

Úhel maximální smykové síly

Hlavní síly - stěna

Popisek

Popis

Výpočet

n1

Hlavní síla

(max)

n2

Hlavní síla

(min)

Alfa (membrána)

Úhel hlavní síly n1

qmax (membrána)

Maximální smyková síla v rovině

Návrhové momenty z EC2 - deska

Popisek

Popis

Výpočet

mxD+

Návrhový moment ve směru x na kladném povrchu

 

 

myD+

Návrhový moment ve směru y na kladném povrchu

mcD+

Návrhový moment v betonu na kladném povrchu

mxD-

Návrhový moment ve směru x na záporném povrchu

myD-

Návrhový moment ve směru y na záporném povrchu

mcD-

Návrhový moment v betonu na záporném povrchu

Návrhové momenty, klasická metoda - deska

Popisek

Popis

Výpočet

mxD+

 

Návrhový moment ve směru x na kladném povrchu

myD+

Návrhový moment ve směru y na kladném povrchu

mcD+

Návrhový moment v betonu na kladném povrchu

mxD-

Návrhový moment ve směru x na záporném povrchu

myD-

Návrhový moment ve směru y na záporném povrchu

mcD-

Návrhový moment v betonu na záporném povrchu

Návrhové momenty z EC2 - stěna

Popisek

Popis

Výpočet

nxD

Návrhová síla ve směru x

nyD

Návrhová síla ve směru y

ncD

Návrhová síla v betonu

Návrhové síly, klasická metoda - stěna

Popisek

Popis

Výpočet

nxD

Návrhová síla ve směru x

 

nyD

Návrhová síla ve směru y

 

ncD

Návrhová síla v betonu

 

Výpočet návrhových sil pro desky a skořepiny podle EC2 využívá postup podle ČSN P ENV 1992-1-1 (731201), dodatek 2, odst. A2.8. Na součinitele se vztahují následující pravidla:

Výpočet návrhových sil pro stěny a skořepiny podle EC2 využívá postup podle ČSN P ENV 1992-1-1 (731201), dodatek 2, odst. A2.9. Na součinitele se vztahují následující pravidla:

Veličiny mxD a myD (nebo nxD a nyD) jsou návrhové momenty (nebo síly) ve výztuži. Záporné hodnoty momentů nebo sil nemají žádný praktický význam a jsou uváděny pouze z důvodu integrity.

Veličina mcD (nebo ncD) je návrhový moment (nebo síla) v betonu a spolu s návrhovými momenty (nebo silami) ve výztuži tvoří jednotnou trojici s ohledem na invariant:

Návrhová síla v betonu ncD se použije při posudku drcení betonu (ČSN P ENV 1992–1–1 (731201), příloha 2, odst. A2.9). Návrhové momenty v betonu mcD nejsou v normě uvedeny, ale jejich význam je analogický a jsou uváděny z důvodu integrity.

Hodnoty návrhových momentů a sil podle klasického algoritmu se spočtou podle levé větve výše uvedeného diagramu, tj. bez zohlednění vztahu mezi mx, my a mxy (nebo nx, ny a nxy). Tento výpočet je na straně bezpečné, ale v některých případech může méně vhodný.

Pravá větev se použije v případě, že některé směry výztuže vypočítané podle levé větve jsou tlačené (záporné hodnoty odpovídajících návrhových veličin). V tomto případě se do tohoto směru přiřadí nulová hodnota návrhové veličiny a ostatní směry budou mít nižší hodnotu návrhové veličiny (a tudíž nižší nutnou plochu výztuže), než je spočteno podle levé větve (podmínka únosnosti je v obou případech splněna). Výpočet podle pravé větve způsobuje vyšší tlak v betonu (veličiny mcD a ncD) než podle levé větve. Z tohoto hlediska se algoritmus podle EC2 může považovat za cenově výhodnější.

 2. Napětí, skupina=3

Základní napětí na 2D

Popisek

Popis

Výpočet

sigxb (nezobr.)

Napětí od ohybových momentů

sigyb (nezobr.)

Napětí od ohybových momentů

sigxyb (nezobr.)

Napětí od ohybových momentů

sigxm (nezobr.)

Napětí od normálových sil

sigym (nezobr.)

Napětí od normálových sil

sigxym (nezobr.)

Napětí od normálových sil

sigx+

Napětí na kladném povrchu

sigy+

Napětí na kladném povrchu

sigxy+

Napětí na kladném povrchu

sigx-

Napětí na záporném povrchu

sigy-

Napětí na záporném povrchu

sigxy-

Napětí na záporném povrchu

tauxz (nezobr.)

Smykové napětí kolmé k rovině

tauyz (nezobr.)

Smykové napětí kolmé k rovině

Hlavní napětí na 2D

Popisek

Popis

Výpočet

sig1+

Hlavní napětí na kladném povrchu (max)

sig2+

Hlavní napětí na kladném povrchu (min)

alfa+

Úhel hlavního napětí sig1+

sigE+

Ekvivalentní napětí na kladném povrchu (Mises)

sig1-

Hlavní napětí na záporném povrchu (max)

sig2-

Hlavní napětí na záporném povrchu (min)

alfa-

Úhel hlavního napětí sig1-

sigE-

Ekvivalentní napětí na záporném povrchu (Mises)

taumaxb

Maximální smykové napětí kolmá k rovině

sigZ

Napětí pro rovinnou napjatost

sigmE

Membránové ekvivalentní napětí (Tresca, Rankine)

sigEmax

Maximální ekvivalentní napětí (Mises)

sigmE

Membránové ekvivalentní napětí (Mises)

sigT+

Ekvivalentní napětí na kladném povrchu (Tresca)

sigT-

Ekvivalentní napětí na záporném povrchu (Tresca)

sigTmax

Maximální ekvivalentní napětí (Tresca)

sigmT

Membránové ekvivalentní napětí (Tresca)

sigR+

Ekvivalentní napětí na kladném povrchu (Rankine)

sigR-

Ekvivalentní napětí na záporném povrchu (Rankine)

sigRmax

Maximální ekvivalentní napětí (Rankine)

sigmR

Membránové ekvivalentní napětí (Rankine)

sigB+

Ekvivalentní napětí na kladném povrchu (Bach)

sigB-

Ekvivalentní napětí na záporném povrchu (Bach)

sigBMax

Maximální ekvivalentní napětí (Bach)

sigmB

Membránové ekvivalentní napětí (Bach)

sigm1

Hlavní membránové napětí na kladném povrchu (max)

sigm2

Hlavní membránové napětí na kladném povrchu (min)

alfam

Úhel hlavního membránového napětí sig1m

Napětí na 3D

Popisek

Popis

Výpočet

sig1, sig2, sig3

Hlavní napětí

Vlastní hodnoty matice napětíσ

taumaxB

Maximální smykové napětí

sigEM

Ekvivalentní napětí (Mises)

sigET

Ekvivalentní napětí (Tresca)

sigER

Ekvivalentní napětí (Rankine)

sigEB

Ekvivalentní napětí (Bach)

Poměrné přetvoření, skupina=14, plastická přetvoření, skupina=15

Poměrná přetvoření na 2D

Základní poměrná přetvoření se vypočítají pomocí následujícího vzorce:

a)ohybová přetvoření

;  ; ;

b)    smyková přetvoření

 ;  ;  ;

c)     membránová přetvoření

 ;  ;  ;

 

Popisek

Popis

Výpočet

epsx+

Poměrné přetvoření na kladném povrchu

epsy+

Poměrné přetvoření na kladném povrchu

gamaxy+

Sklon na kladném povrchu

epsx-

Poměrné přetvoření na záporném povrchu

epsy-

Poměrné přetvoření na záporném povrchu

gamaxy-

Sklon na záporném povrchu

eps1+

Hlavní přetvoření na kladném povrchu (max)

eps2+

Hlavní přetvoření na záporném povrchu (min)

alfa+

Úhel hlavního přetvoření na kladném povrchu

eps1-

Hlavní přetvoření na záporném povrchu (max)

eps2 -

Hlavní přetvoření na záporném povrchu (min)

alfa-

Úhel hlavního přetvoření na záporném povrchu

epsM+

Ekvivalentní přetvoření na kladném povrchu (Mises)

epsM-

Ekvivalentní přetvoření na záporném povrchu (Mises)

epsM

Maximální ekvivalentní přetvoření (Mises)

epsR+

Ekvivalentní přetvoření na kladném povrchu (Rankine)

epsR-

Ekvivalentní přetvoření na záporném povrchu (Rankine)

epsR

Maximální ekvivalentní přetvoření (Rankine)

epsT+

Ekvivalentní přetvoření na kladném povrchu (Tresca)

epsT-

Ekvivalentní přetvoření na záporném povrchu (Tresca)

epsT

Maximální ekvivalentní přetvoření (Tresca)

epsB+

Ekvivalentní přetvoření na kladném povrchu (Bach)

epsB-

Ekvivalentní přetvoření na záporném povrchu (Bach)

epsB

Maximální ekvivalentní přetvoření (Bach)

 

Poměrná přetvoření na 3D

Popisek

Popis

Výpočet

eps1, eps2, eps3

Hlavní poměrná přetvoření

Vlastní hodnoty matice přetvořeníε

epsM

Ekvivalentní přetvoření (Mises)

epsT

Ekvivalentní přetvoření (Tresca)

epsR

Ekvivalentní přetvoření (Rankine)

epsB

Ekvivalentní přetvoření (Bach)

R1, R2, R3 jsou vlastní hodnoty matice R:

SCIA web

Downloads

SCIA is part of the Nemetschek group