|
||
|
Analýza základových konstrukcí je omezena řešitelností problému modelování části základu, který je v kontaktu s podložím. Nejlepší řešení je použít 2D model podloží, který přibližně představuje deformační vlastnosti celého masívu pod základy pomocí modelu povrchu.
Vlastnosti takového modelu jsou vyjádřeny interakčními parametry označovanými jako C. Tyto parametry jsou určovány přímo na konstrukčních prvcích, které jsou v kontaktu s podložím a ovlivňují matici tuhosti.
Zjednodušeně si můžeme představit, že C je charakteristika pružného, přesněji pseudoelastického, kontaktu nebo povrchových pružinových konstant, jejichž změna odpovídá skutečnému stavu analyzovaného systému. Můžeme tedy použít odborný slang, který toto nazývá „podpora na parametrech C“, která je zevšeobecněním standardní Winklerovy myšlenky o podepření ve formě husté tekutiny g = C1 (MNm-3) nebo ve formě nekonečně hustého systému svislých pružin. Zevšeobecnění je velmi důležité a zabývá se hlavně úvahou o významnosti smykového rozložení v podloží, které je opomenuté Winklerovým modelem. Parametry vzájemného působení mezi základem a podložím závisí na rozložení a úrovni zatížení nebo kontaktním napětí mezi povrchem konstrukce a okolním podložím na geometrii základového povrchu a na mechanických vlastnostech zeminy.
Výpočtový modul Soilin bere v úvahu všechny zmíněné závislosti.
Stejně jako parametry C ovlivňují kontaktní napětí, tak i naopak – rozložení kontaktního napětí má vliv na sedání základu a proto se pro parametry C používá iterativní řešení.
Modelování interakce mezi konstrukcí a podložím vyžaduje zohlednění vlivu podloží kolem konstrukce. Toto vnější podloží podpírá hrany základové desky díky smykové tuhosti. V minulosti se k modelování tohoto jevu doporučovalo používat speciální postupy. Současné verze systému SCIA Engineer využívají sofistikované řešení, jehož princip je popsán v následujícím odstavci.
Program k hraně posuzované základové desky automaticky přidá pružiny, které přibližně nahrazují vliv tzv. podpůrných prvků (1 až 2 metry široký pás podél hran základové desky, jehož hustota se blíží nule). Řešení získané za použití tohoto přístupu zohledňuje vliv podloží vně (v blízkosti) posuzované základové desky.
Ve srovnání s řešením bez takových pružin poskytují výsledky s pružinami menší deformace hran základové desky, což znamená větší ohybové momenty v základové desce.
Pružiny orientované ve směru osy z globálního souřadného systému jsou přiřazeny ke všem uzlům hran s výjimkou situace, kdy má daný bod již přiřazenou jinou pružinu nebo je zadáno pootočení uzlu. V takovém případě program předpokládá, že uživatel již definoval speciální typ podpory a že tuto speciální konfiguraci nemá automaticky na pozadí měnit.
Tyto výjimky lze využít k záměrnému potlačení použití pružin na hranách podél určitých čar. Uživatel může podél požadovaných čar (hran) definovat velmi malé liniové pružiny a tím eliminovat vliv okolního podloží (např. v případě použití štětové stěny).
Výstupem soilinu jsou parametry podloží C1z, C2x a C2y.
Parametry C1x a C1y jsou vždy definovány uživatelem.
C1z - Odpor prostředí proti wP (mm) [C1z in MN/m3]
C2x - Odpor prostředí proti wP/xP (mm/m) [C2x in MN/m]
C2y - Odpor prostředí proti wP/yP (mm/m) [C2y in MN/m]
C1x - Odpor prostředí proti uP (mm) [C1x in MN/m3]
C1y - Odpor prostředí proti vP (mm) [C1y in MN/m3]
Obvykle se uvažuje C2x rovno C2y a C1x rovno C1y, protože se to počítá tzv. izotropní variantou výpočtu C2.
Výpočet lze spustit, když je zapnuta funkcionalita Podloží/Interakce s podložím.
Použít interakci s podložím je možné u projektů typu Deska XY a Obecná XYZ.