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Applications
� We need only few eigen (singular) pairs, and 

matrices can be large and sparse
� Solving homogeneous system of linear equations A x = 0. 

Solution is given by right singular vector of A 
corresponding to smallest singular value

� Principal component analysis
We are interested in eigen pairs corresponding to few 
largest eigenvalues

� Discretization of Partial differential equation
� Spectral image segmentation
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Review:
Eigenvalue and Eigenvector

� If  A x = λ x
� where,

� A ∈ Rn � n

� x : vector
� λ : scalar

� Then,
� λ : eigenvalue
� x : eigenvector
� (λ,x) : eigen pair



Review:
Eigenvalue decomposition (EVD)

� A V = V D
� V = [ x1, x2, L, xn ]

� Xi’s are eigenvectors

� D = diag( λ1, λ2, L, λn)
� λI’s are eigenvalues

� In Matlab: [ V, D ] = eig( A )

Review:
Characteristic Equation

� Eigenvalues are roots of the polynomial 
equation

det( A - λ I ) = 0
� I : n × n Identity matrix
� det(.) : determinant of the matrix
� Polynomial equation of degree n



Review:
Companion Matrix

� Roots of a polynomial equation

xn + αn-1xn-1 + L + α1x + α0 = 0
are given by eigenvalues of the matrix

Review:
Abel-Rufini’s Theorem

� Theorem
� There are no algebraic formulae for roots of a 

general polynomial with degree greater than 4

� Consequence
� As opposed to solving linear system of 

equations, iteration is the only way for eigenvalue 
computations for a general matrix



Review:
Eigenvector Expansion
� (λi, xi) are eigen pairs of matrix A
� Let us express any vector v as linear combination 

of eigenvectors,
� v = c1 x1 + � + cn xn

� Result of successive multiplication by A can be 
represented as,
� A v = λ1 c1 x1 + � + λn cn xn
� (Aj) v = λ1

j c1 x1 + � + λn
j cn xn

� Useful later

Problem Statement
� Given a matrix A ∈ Rn � n, find k eigen pairs 

corresponding to eigenvalues with 
properties such as
� Largest (or smallest) absolute value
� Largest (or smallest) real part
� Nearest to given scalar µ



Power Iteration

� Basic iteration step:
� Analysis

� (λi, xi) : eigen pair of A, arranged in decreasing 
order of abs(λi)

Power Iteration, cont.

� Eigenvalue estimate :

� Convergence rate (eigenvector):
� Disadvantages:

� Very slow convergence if  λ1 � λ2
� Cannot find complex eigenvalues
� Only finds largest eigenvalue



Spectral Transformation
� A ∈ C n � n has eigen pair (λ, x)

� p(τ) and q(τ) are polynomials in τ
� Polynomial transformation

� p(A) has eigen pair (p(λ), x)

� Rational transformation
� [q(A)]-1p(A) has eigen pair ( p(λ)/q(λ), x)

� Shift-Invert
� (A-µ I)-1 has eigen pair ( 1/(λ-µ), x)

Inverse Iteration
� Use a prior estimate of eigenvalue in shift-invert 

transformation

� Due to ill-conditioning, linear solver preferred to 
inverse

� Pre-factorize to keep per iteration complexity low



Rayleigh Quotient Iteration

� Use current estimate of eigenvalue as shift
� Advantages

� Faster convergence: quadratic in general and 
cubic for hermitian problem

� Disadvantages
� Per iteration complexity high

Subspace Iteration

� Used for finding multiple eigenvalues 
simultaneously.
� Generalization of power iteration to multiple 

vectors.
� Need better normalization than individually 

normalizing each vector otherwise every 
vector will converge to v1



Subspace Iteration
� Start with Q0 ∈ Cn � k whose columns are 

orthonormal
� Iteration steps

� Zj = A Qj-1
� Orthonormalize Zj = Xj Rj

� Columns of Xj are orthonormal
� Rj is upper triangular

� Qj = Xj
� Test for convergence

� Convergence rate = 

Upper Hessenberg Matrix

� Upper Hessenberg Matrix
� H(i,j) = 0 for i>(j+1)
� Hermitian ⇒ Tri-diagonal

� A → H
� Householder reduction
� Givens rotation
� Both are O(n3) in general



Schur’s Triangularization Theorem
� ∀ A ∈ C n � n, ∃ Q, R,
such that

� Q is a unitary matrix (not unique)
� R is an upper triangular matrix (not unique)
� A Q = Q R
� Diagonal elements of R are eigenvalues of A

� A → R → { λ } 
� 2nd step is trivial but 1st step is very difficult

� A → H → { λ }
� In practice, we go from A to upper hessenberg H

QR Iteration
� Iteration steps:

� Ak = Qk Rk
� Ak+1 = Rk Qk

� Every iteration is similarity and hence preserves 
eigenvalues
� Ak+1 = Qk

T Ak Qk
� If converges then converges to A� = R
� Doesn’t converge for matrices with complex or 

negative eigenvalues 



Explicitly shifted QR iteration
� Convert A to upper hessenberg H using 

similarity transformation
� Iteration steps

� Hk - αk
�

= Qk Rk
� Hk = Rk Qk + αk

�

� Efficiency considerations
� Householder reduction is efficient for A � H
� QR factorization of H can be done efficiently using Givens 

rotation
� Related to inverse power iteration with shift αk

Implicitly shifted QR iteration

� Combine two complex conjugate shifts
� Can handle complex eigenvalues and 

eigenvectors using real arithmetic, thus 
increasing efficiency



Definitions
� For A ∈ C n � n and 0 ≠ b ∈ C n � 1,

� { b, Ab, A2b, L, Aj-1b } : Krylov sequence

� Kj = span{ b, Ab, L, Aj-1b } : Krylov subspace

� Kn � j = ( b | Ab | L | Aj-1b ) : Krylov matrix
� Ki = Range( Kn � j )

Krylov Subspace

� Let A have n distinct eigenvalues λ1, L, λn, 
with orthonormal eigenvectors x1, L, xn
which form an orthonormal basis for Rn .
� For any vector b ∈ Rn, b = c1 x1 + L + cn xn

� Let’s analyze the structure of Krylov matrix, 
Kn � j = ( b | Ab | L | Aj-1b )



Krylov Subspace

� If ci ≠ 0 ∀ i, 
� Rank(Kn � j) = min( j, n)

� If number of non-zero ci’s is m,
� Rank(Kn � j) = min( j, m)

Basis for Krylov Subspace
� Krylov sequence forms a basis for Krylov 

subspace but it is ill-conditioned.
� Better to work with an orthonormal basis.
� Lanczos algorithm builds an orthonormal 

basis for Krylov subspace for hermitian 
matrices.
� Arnoldi algorithm generalizes this to non-

hermitian matrices.



Ritz value and Ritz vector
� Let Qk = [ q1, L, qk] be orthonormal basis for 

Krylov subspace Kk.
� H = QHAQ is projection of operator A onto Kk
� Let (λ,y) be an eigen pair of H.
� λ is called Ritz value of A and provides an 

approximation for eigenvalue of A.
� x = Q y is called Ritz vector of A and provides an 

approximation for eigenvector of A.

Lanczos Tridiagonalization Algorithm

� Start with q0 = 0 and q1 = v1 ( start vector )
� Update αj, βj, qj+1, for j=1,2, L, n, until β is non-zero



Lanczos Tridiagonalization Algorithm

� After k iteration steps,

� Qk = [ q1, L, qk ]
� Hk = k × k tridiagonal

� Eigen pairs of Hk are Ritz pairs, and provide 
an approximation for eigen pairs of A

� If βk = 0 for k<n, iteration terminates before n 
steps.

Lanczos Tridiagonalization Algorithm

� Advantages
� Every iteration step has just one matrix-vector 

multiplication, hence linear complexity for 
sufficiently sparse matrices

� Disadvantages
� In finite precision arithmetic qi’s may not be 

orthogonal. Cost of insuring orthogonality can be 
huge as number of iteration increases. This is the 
motivation behind all restarting schemes.



Arnoldi Iteration

� Like Lanczos but now we have an upper 
hessenberg H, instead of tridiagonal.

Arnoldi Iteration

� Ritz pairs of A can be computed from Hk
and checked for convergence
� Maximum number of steps is selected as,

m = k + p

� After k iteration steps, we get k-step Arnoldi 
factorization of A



Restarting the Arnoldi Method
� Need for Restarting

� Quadratic increase in cost of maintaining 
orthogonality of basis vectors with increasing 
number of iterations

� Explicit Restart
� Restart the whole process (m steps) with new 

initial vector

� Implicit Restart
� Compress eigen information of interest and 

repeat last p steps.

Explicitly restarted Arnoldi Iteration
� Start with vector v1
� Compute m=k+p step Arnoldi factorization
� Compute Ritz estimates for eigenvalues
� Stop if convergence has been achieved
� Separate eigenvalue estimates into groups of 

wanted and unwanted
� Compute better starting vector w1 using obtained 

information
� Restart m step Arnoldi factorization using w1



Explicitly Restarted Arnoldi Iteration

� How to compute better starting vector ?
� Build a polynomial transformation ψ(A) to damp 

unwanted components from eigenvector 
expansion of v1 and set w1 = ψ(A) v1

� Set w1 = linear combination of Ritz vectors

Implicitly restarted Arnoldi Iteration
� Start with vector v1
� Compute m=k+p step Arnoldi factorization
� Compute Ritz-estimates for eigenvalues
� Stop if convergence has been achieved
� Select unwanted eigenvalues
� Using unwanted eigenvalues as shifts, apply p 

steps of implicitly shifted QR iteration to compress 
eigen information of interest into k dimensional 
subspace

� Repeat last p steps of Arnoldi factorization



Implicitly Restarted Arnoldi Iteration

� Advantages
� Uses O(nk) space for computing k eigen pairs
� For small k and sufficiently sparse matrix, each 

iteration costs only O(n) time.
� Number of iterations for convergence is only 

slightly larger than Arnoldi iteration without 
restart

Singular Value Decomposition (SVD)
� A = U S VT

� A � � m � n

� As opposed to eigenvalue decomposition, SVD is defined for 
rectangular matrices as well

� U = [ u1, � , um ]
� ui ‘s are left singular vectors

� V = [ v1, � , vn ]
� vi ‘s are right singular vectors

� S � � m � n ( same size as A )
� Singular values on diagonal, rest zero

� In Matlab: [ U, S, V ] = svd( A )



Singular Value Decomposition (SVD)

� Singular values of A ↔ eigenvalues of ATA 
or AAT

� Right singular vectors of A ↔ eigenvectors 
of ATA
� Left singular vectors ↔ eigenvectors of AAT

� ATA and AAT are not computed explicitly.  
ATAx ≡ AT(Ax)

Some experiments in Matlab

� eigs (svds): 
� finds k eigen (singular) values with specified 

property and corresponding eigen (singular) 
vectors. Uses implicitly restarted Arnoldi iteration 
via ARPACK routines.

� Demo:
� grouping of points using normalized cut



Normalized Cuts and Image Segmentation
� Affinity matrix

� Eigenvalue problem

Where, D = Diag( Sum( W ) )

� Second smallest eigenvector used for segmentation

Matlab Demo
Before grouping
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For 1000 points, eigs : eig = 1.8 s : 22.4 s



Conclusion
� Krylov subspace methods are very suitable for 

finding few eigen ( singular ) pairs of interest.
� By using the matrix only in the form of matrix-

vector product, they allow for very efficient use of 
special structures present in the matrix e.g. 
sparseness.

� Implicitly Restarted Arnoldi Iteration is the most 
time and space efficient method for computing 
few eigen pairs for large sparse matrices.

Extra Slides

� Krylov
� Lanczos
� Arnoldi
� Linear System of equations and Krylov 

subspace
� Conditioning of Matrices



Krylov
� Aleksei Nikolaevich Krylov (1863–1945) showed in 1931 how to 

use sequences of the form {b, Ab, A2b, . . .} to construct the 
characteristic polynomial of a matrix. Krylov was a Russian 
applied mathematician whose scientific interests arose from his 
early training in naval science that involved the theories of 
buoyancy, stability, rolling and pitching, vibrations, and 
compass theories. Krylov served as the director of the Physics–
Mathematics Institute of the Soviet Academy of Sciences from 
1927 until 1932, and in 1943 he was awarded a “state prize” for 
his work on compass theory. Krylov was made a “hero of 
socialist labor,” and he is one of a few mathematicians to have 
a lunar feature named in his honor—on the moon there is the 
“Crater Krylov.”

Lanczos
� Cornelius Lanczos (1893–1974) was born Kornel Lowy in Budapest, 

Hungary, to Jewish parents, but he changed his name to avoid trouble 
during the dangerous times preceding World War II. After receiving his 
doctorate from the University of Budapest in 1921, Lanczos moved to 
Germany where he became Einstein’s assistant in Berlin in 1928. After 
coming home to Germany from a visit to Purdue University in Lafayette, 
Indiana, in 1931, Lanczos decided that the political climate in Germany was 
unacceptable, and he returned to Purdue in 1932 to continue his work in 
mathematical physics. The development of electronic computers stimulated 
Lanczos’s interest in numerical analysis, and this led to positions at the 
Boeing Company in Seattle and at the Institute for Numerical Analysis of 
the National Bureau of Standards in Los Angeles. When senator Joseph R. 
McCarthy led a crusade against communism in the 1950s, Lanczos again 
felt threatened, so he left the United States to accept an offer from the 
famous Nobel physicist Erwin Schr¨odinger (1887–1961) to head the 
Theoretical Physics Department at the Dublin Institute for Advanced Study 
in Ireland where Lanczos returned to his first love-the theory of relativity.



Arnoldi
� Walter Edwin Arnoldi (1917–1995) was an American 

engineer who published this technique in 1951, not far from 
the time that Lanczos’s algorithm emerged. Arnoldi received 
his undergraduate degree in mechanical engineering from 
Stevens Institute of Technology, Hoboken, New Jersey, in 
1937 and his MS degree at Harvard University in 1939. He 
spent his career working as an engineer in the Hamilton 
Standard Division of the United Aircraft Corporation where he 
eventually became the division’s chief researcher. He retired 
in 1977. While his research concerned mechanical and 
aerodynamic properties of aircraft and aerospace structures, 
Arnoldi’s name is kept alive by his orthogonalization 
procedure.

Linear system of equations and Krylov 
subspace

� Solution of Ax = b lies in the Krylov 
subspace
span { b, Ab, L }
� Generalized Minimum RESidual (GMRES) 

method iteratively builds Krylov subspace 
of increasing dimension till sufficiently 
accurate solution has been obtained.



Conditioning of Matrices
� Notion of conditioning depends on problem.

� For linear systems we ideally want equal 
eigenvalues

� For eigenvalue problem we want large 
separation between wanted and unwanted 
eigenvalues

� If several eigenvalues are almost equal, finding 
individual eigenvectors is ill conditioned. Better to 
find invariant subspace associated with that 
cluster of eigenvalues.


