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The objective in this paper is to present some recent developments regarding the subspace iteration
method for the solution of frequencies and mode shapes. The developments pertain to speeding up the
basic subspace iteration method by choosing an effective number of iteration vectors and by the use of
parallel processing. The subspace iteration method lends itself particularly well to shared and distributed
memory processing. We present the algorithms used and illustrative sample solutions. The present paper
may be regarded as an addendum to the publications presented in the early 1970s, see Refs. [1,2], taking
into account the changes in computers that have taken place.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The subspace iteration method was developed by K.J. Bathe [1]
for the solution of frequencies and mode shapes of structures, and
in particular for the earthquake analysis of buildings and bridges
[1–3]. Originally in the 1970s, relatively few eigenpairs were
sought in these solutions, like the lowest 10 to 20 frequencies
and mode shapes, when the model contained a total of 1000 to
10,000 degrees of freedom. However, since its original develop-
ment, the subspace iteration method has been used abundantly
in research and commercial finite element programs for small
and very large finite element systems, and the method has natu-
rally attracted considerable attention for improvements, see for
example Refs. [4–10].

The original development of the method given in Ref. [1] is
based on vector simultaneous iterations, as proposed by Bauer
[11] and Rutishauser [12], but includes the important use of the
Ritz method, the selection of the iteration starting vectors, the
use of an effective number of starting vectors, error measures,
and the Sturm sequence check. Without the use of the Ritz step,
simultaneous vector iterations are not effective. While abundantly
used for frequency and linearized buckling solutions in engineering
and the sciences, the method is also employed in the solution of
random eigenvalue problems [13]. A convergence analysis of the
subspace iteration method is given in Ref. [14].

Two attractive properties of the subspace iteration method are,
firstly, its robustness and efficiency and, secondly, the fact that
ll rights reserved.
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using a starting subspace close to the subspace of interest can lead
to a very fast solution. This situation is frequently encountered in
engineering and the sciences, e.g. in optimization problems and
in protein dynamics. We shall focus in this paper on the selection
of the number of iteration vectors and illustrate a third attractive
property, namely, its use in parallelized computations.

Also, as another technique, the Lanczos method can be very effec-
tive, in particular when solving for many frequencies and mode
shapes [15,16]. Initially, the Lanczos method showed instabilities
due to loss of orthogonality of the iteration vectors. However, these
difficulties have been largely overcome and in good implementa-
tions the method can be very efficient [17,18]. A particular asset of
the method is that the computational effort may increase almost lin-
early with the number of eigenpairs sought. This asset can render the
Lanczos method attractive compared to the original subspace itera-
tion method if many eigenpairs need be calculated. Namely, in that
case, the computational effort increases larger than linear in the ori-
ginal subspace iteration method, and this increase can be significant.
The Lanczos method and Bathe’s subspace iteration method (or vari-
ants of these two iterative schemes) are two techniques that, at pres-
ent, are very widely used for the solution of large eigenvalue
problems in finite element analysis. Any noteworthy improvements
to these methods are therefore of interest.

An important step in the subspace iteration method is to estab-
lish effective starting iteration vectors, which also implies to, ide-
ally, use the optimal number of iteration vectors.

Lately much effort has been spent on using parallel processing in
finite element analysis, in shared memory and distributed memory
processing modes. Whereas the Lanczos method (working on indi-
vidual vectors [16]) can intrinsically only be parallelized in the
method – Revisited. Comput Struct (2012), http://dx.doi.org/10.1016/
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factorization of the stiffness matrix and the forward reduction and
back-substitution of the individual vectors, the subspace iteration
method allows in addition the parallel solution of multiple iteration
vectors, which can result in a large computational benefit.

In this paper we first present the subspace iteration method
implying use on a single processor machine and discuss how to
choose an effective number of iteration vectors in structural anal-
yses. While the optimal number must clearly depend on the prob-
lem considered, a good choice can mean a significant reduction in
computational time when many frequencies and mode shapes
shall be computed. Based on the discussion, we arrive at a simple
formula for the selection of a reasonable number of iteration vec-
tors for any solution.

Thereafter, we consider the use of the subspace iteration meth-
od in parallel processing, on shared memory and distributed mem-
ory machines. In a brief discussion, we show how the method lends
itself particularly well to parallel computations.

Finally, we give the results of some illustrative example
solutions.

2. The basic subspace iteration method

The basic equations of Bathe’s subspace iteration method have
been published in Refs. [1,16], but we include them here for com-
pleteness of the presentation. Thereafter we focus on the evalua-
tion of an effective number of iteration vectors.

2.1. The basic equations

Let K and M be the stiffness and mass matrices of a finite ele-
ment system with n degrees of freedom, and consider the general-
ized symmetric eigenvalue problem

Ku ¼ kMu ð1Þ

We seek the smallest p eigenvalues ki, i = 1, . . . ,p, and corresponding
eigenvectors ui, i = 1, . . . ,p, with the ordering

0 < k1 6 k2 6 � � � 6 kp ð2Þ

which satisfy

Kui ¼ kiMui; i ¼ 1; . . . ; p ð3Þ

and the Kronecker delta relationships

uT
i Muj ¼ dij

uT
i Kuj ¼ kidij

ð4Þ

If the smallest eigenvalue is actually equal to zero, a shift can be
used to reach the situation given in Eq. (2) [16]. The basic equations
used in the subspace iteration method are, for k = 1, 2, . . .,

KXkþ1 ¼ MXk ð5Þ
Kkþ1 ¼ XT

kþ1KXkþ1 ð6Þ
Mkþ1 ¼ XT

kþ1MXkþ1 ð7Þ
Kkþ1Q kþ1 ¼Mkþ1Q kþ1Kkþ1 ð8Þ
Xkþ1 ¼ Xkþ1Q kþ1 ð9Þ

In practice, it is effective to order the iteration vectors in Xk natu-
rally from the first to the last columns such that these correspond
to increasing eigenvalues. Then the first vector in Xk corresponds
to the eigenvector approximation of u1 and the qth vector to the
eigenvector approximation of uq. The calculated approximations
to the eigenvalues are given in Kk+1.

There are three distinct steps of solution.
First, the q starting iteration vectors in X1 are established, q > p,

where X1 is a matrix of dimension n � q.
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Second, the iteration is performed, using Eqs. (5)–(9), for
k = 1,2, . . ., until the convergence tolerance is satisfied. Let kðkþ1Þ

i

be the approximation for ki calculated in the kth iteration, k P 2,
then we have convergence to an accuracy of 2s digits in the re-
quired eigenvalues when for tol = 10�2s
1�
kðkþ1Þ

i

� �2

qðkþ1Þ
i

� �T
qðkþ1Þ

i

2
64

3
75

1=2

6 tol; i ¼ 1; . . . ;p ð10Þ
where qðkþ1Þ
i is the ith vector in the matrix Qk+1 corresponding to

kðkþ1Þ
i [16]. The eigenvector approximations will only be accurate

to s digits. The theoretical convergence rates of these vectors are
ki

kqþ1
, with hence a higher convergence rate to an eigenvector corre-

sponding to a smaller eigenvalue [14,16]. While theoretical, these
convergence rates are usually also observed in practice.

Third, the Sturm sequence check is carried out to ensure that the
lowest p eigenpairs, that is (ki,ui) for i = 1, . . .p, have indeed been
calculated [1,16]. In case the Sturm sequence check is not passed,
it is usually best to continue the iteration with a larger number
of iteration vectors. In practice, this condition is hardly encoun-
tered provided a large enough number of iteration vectors is
employed.

Using the above equations, it is crucial to establish effective
starting iteration vectors, considering the quality and the number
of vectors. The quality of the starting iteration vectors is important,
because theory tells that if the subspace spanned by these vectors
contains the exact eigenvectors, then a single iteration will calcu-
late the exact eigenvalues and vectors sought. Nevertheless, in
the present paper, we choose to use the simple algorithm of Ref.
[1], see also Ref. [16], to establish the starting iteration vectors be-
cause we want to focus on other aspects of the solution scheme.

However, it should be noted that starting iteration vectors of
much better quality may be generated or known from a previous
solution. The eigenvectors just computed can be used, for example,
in optimization problems of structures when the frequencies are
calculated as the structure changes [16], in solving random eigen-
value problems when using Monte Carlo simulations [13], or in
computational biology when evaluating the frequencies and mode
shapes of proteins on conformational pathways [19]. In these
cases, the use of the calculated eigenvectors of the previous solu-
tion as the starting vectors of the next solution can be very
effective.

When these conditions do not apply and the order of the matri-
ces n is large, particularly good quality starting iteration vectors
may be generated, for example, using a reduction technique or
the method of component mode synthesis [16]. Using substructur-
ing smaller systems would be solved, even only approximately,
and the solutions of those would be used to establish good starting
iteration vectors in X1 for the complete system solution. This ap-
proach can be quite effective if ‘typical smaller systems’ can be
identified which in the complete system repeat themselves, so that
the eigensolution of a small problem can be used a multiple num-
ber of times in establishing the starting iteration vectors.

Whichever algorithm is used to establish the starting iteration
vectors, an effective number of vectors q is important because the
convergence rate to an eigenvector is given by ki

kqþ1
. In general, if q

is small, but of course larger than p, we need a relatively large
number of iterations to converge, while if q is large, we only need
a few iterations to converge but in this case each iteration requires
more computations. Hence, the use of an effective value of q is
desirable and we address the calculation of such value in the next
section.
method – Revisited. Comput Struct (2012), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.compstruc.2012.06.002
http://dx.doi.org/10.1016/j.compstruc.2012.06.002


K.J. Bathe / Computers and Structures xxx (2012) xxx–xxx 3
2.2. An algorithm to calculate q

A fundamental observation regarding eigenvalues of structures
is that the values frequently increase in some known functional
form, or at least in some approximate ‘‘guessed’’ functional form.

If we know the functional form, we can use this fact to increase
the effectiveness of the subspace iteration method by finding an
effective value of q. In the analysis given next, we follow the deri-
vation used in Ref. [19] where it was assumed that the eigenvalues
vary linearly in magnitude (as it is approximately the case for
proteins).

Assume that the functional form is given by the simple
distribution

kk ¼ k1 þ a1ðk� 1Þ þ a2ðk� 1Þ2 þ a3ðk� 1Þ3 þ a4ðk� 1Þ4 ð11Þ

where the a1, a2, a3, and a4 are given values, and k = 1, 2, . . . The qua-
dratic term corresponds, for example, to the simple problem of a
tensioned string, but the complete formula is easily used for struc-
tural analysis.

With the mentioned ordering of iteration vectors used in Xk, the
last iteration vector to converge to an eigenvector of interest is the

pth vector in Xk and its rate of convergence is kp

kqþ1
. Let e(i) be the vec-

tor difference between the pth eigenvector and its approximation
after i iterations, then we have the norm relationship

keðiÞk ¼ ðkp=kqþ1Þikeð0Þk ð12Þ

where e(0) is the initial error vector. To reach s digits of accuracy in
the eigenvector approximation we therefore need to have that (con-
sidering the infinity norm)

ðkp=kqþ1Þikeð0Þk 6 10�s ð13Þ

and hence we require l iterations for the vector to converge, where l
is given by

l ¼ ln½10�s=keð0Þk�
ln½kp=kqþ1�

ð14Þ

We next use that the eigenvalue magnitudes increase as given in Eq.
(11), which directly gives

kp

kqþ1
¼ k1 þ a1ðp� 1Þ þ a2ðp� 1Þ2 þ a3ðp� 1Þ3 þ a4ðp� 1Þ4

k1 þ a1ðqÞ þ a2ðqÞ2 þ a3ðqÞ3 þ a4ðqÞ4
ð15Þ

We now assume that the norm of e(0) is the same irrespective of
what value of q is used, that p and q are large, and that k1 in the
numerator and denominator can be neglected. If k1 were too large
to neglect, a shift could be applied [16]. Then we directly obtain

l ¼ ln½10�s=keð0Þk�

ln
pþ c1p2 þ c2p3 þ c3p4

qþ c1q2 þ c2q3 þ c3q4

� � ð16Þ

where c1 = a2/a1, c2 = a3/a1, c3 = a4/a1 (with a1 assumed to be non-
zero). However, with this relationship the number of numerical
operations required for l iterations with q vectors, assuming
n� q, are [16]

OPC ¼ ln½10�s=keð0Þk�

ln
pþ c1p2 þ c2p3 þ c3p4

qþ c1q2 þ c2q3 þ c3q4

� � ðbnmqþ 2nq2 þ 3nqÞ ð17Þ

where n is the size and m is the ‘effective’ full half-bandwidth of the
matrix K, and b = 2 and 4 for a lumped mass matrix and a consistent
mass matrix, respectively. In the case of the consistent mass matrix,
we assume that M has the same bandwidth as K when in fact its
bandwidth is, in practice, usually much smaller because no factor-
ization of M is involved.
Please cite this article in press as: Bathe K.J. The subspace iteration
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Since our only purpose is to find the best value of q for each va-
lue of p, we can use

OPC ¼ a

ln
pþ c1p2 þ c2p3 þ c3p4

qþ c1q2 þ c2q3 þ c3q4

� � ðbnmqþ 2nq2 þ 3nqÞ ð18Þ

where a is a negative unknown constant of unimportant magnitude
for this analysis. This expression assumes that all operations are
performed in core, that is, the effort of disk accessing is not in-
cluded. Minimizing the expression with respect to q, we find an
approximation to the value of q that requires the least amount of
computations to obtain the p eigenvalues and vectors. We call this
value qbest. Note that this analysis does of course not tell the actual
computational effort needed for the solution but only that the min-
imum is approximately expended when employing qbest.

Fig. 1 shows the value of OPC using a = �10�12 for the cases of 1
and 10 million equations and different parameters. There are many
combinations of parameters that can occur and we show the re-
sults of some key cases only, but also note that if c1 = c3 = 0.0 but
c2 = 1.0 and if c1 = c2 = 0.0 and c3 = 1.0 we have practically the same
curves as in Fig. 1 but scaled down. We notice that in all cases the
curves flatten around their minima at about 2p, so that we can use
qbest = 2p. Although the actual minimum is reached at a larger va-
lue, the difference in OPC is relatively small and more memory is
needed for a larger q. Similar observations are made when using
different reasonable values of the constants ci, i = 1,2,3 and (n,m),
but of course the magnitude of the function OPC changes. Hence,
considering this information we can see that a reasonable value
of q is given by the very simple formula

q ¼maxfpþ 8;2pg ð19Þ

where we use p + 8 to have enough iteration vectors when p is
small. Of course, if the exact distribution of the eigenvalues is
known, the minimization of OPC in Eq. (18), in appropriately mod-
ified form, could be used to obtain a better value of q than given by
Eq. (19). In fact, this approach was followed in Ref. [19] and the
resulting solution times scaled linearly.

It is interesting to note that in the original development of the
subspace iteration procedure the same expression in the brackets
was used but its minimum [1,16]. Hence – historically – an oppo-
site value of what we now propose in Eq. (19) was given decades
ago. This was so, because the experience at that time was based
on seeking a much smaller number of eigenpairs (typically less
than 20 pairs only) than in today’s practice and the computers
were much less powerful, in terms of computational speed and
memory available. Of course, the analysis given above was not per-
formed, but in particular, with the large computer memory avail-
able at present, a much larger number of iteration vectors can
now be used effectively. These iteration vectors can in particular
be processed efficiently in the parallel processing considered next.
3. Shared and distributed parallel processing

The subspace iteration scheme lends itself very well to parallel
processing. In essence, the following arrangements are used effec-
tively in the parallelization of the computations.

Assume that we have N nodes with M cores on each node. A rel-
atively small but quite powerful computing environment might
have N = 4 and M = 8. Hence, here we would use one root node
and 3 additional nodes, with a total of 32 cores.

Considering Eqs. (5)–(7) and (9), in which most of the computa-
tional effort is expended, the q iteration vectors are partitioned
horizontally by N and vertically by M. Hence, for the example gi-
ven, the matrix Xk being of dimension n � q is ‘‘sliced’’ as shown
in Fig. 2. The coefficient matrices K and M are also automatically
method – Revisited. Comput Struct (2012), http://dx.doi.org/10.1016/
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Fig. 1. The number of numerical operations OPC as a function of q for different cases of (n,m) and p; Eq. (18) is used with a = �10�12.
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Xk = 

M = 8

N= 4

iteration vectors

Fig. 2. The slicing of the matrices used in parallel processing; N = number of nodes
working in DMP; M = number of cores on each node.
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Fig. 3. Beam problem solved for lowest frequencies and mode shapes.
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Fig. 4. Solution times for frequencies and mode shapes of the beam problem.

Fig. 5. Bolted wheel assembly.
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rearranged to have minimum coupling for the horizontal slicing
used for the vectors.

In the DMP computations, each node operates on the horizontal
slices of the matrices, whereas in the SMP computations of each
node the vertical slices are used. This is a natural way to proceed
and we note that these computations can be performed simulta-
neously and in a very efficient manner.

4. Illustrative solutions

In the illustrative solutions, the formula for q given in Eq. (19)
was used, and since many eigenpairs are computed q = 2p. As men-
tioned already, the simple way of generating the starting iteration
vectors given in Refs. [1,16] was used. Also, no acceleration tech-
niques, as published for example in Refs.[4–10], were employed.
The solutions were obtained using an HP cluster consisting of 4
nodes, each with dual quad-core processors running at 2.67 GHz
connected by InfiniBand. The memory available was 48 GB on the
root node and 24 GB on each of the other 3 nodes. The eigenvalues
were calculated (with the default value s = 3) to 6 or more digits of
accuracy. The first solution example is a ‘constructed’ benchmark
test, and the next two examples are actual industry cases solved
with ADINA, see Tech Briefs [20]. In all cases the consistent mass
matrix was used.

4.1. Solution of beam problem

Fig. 3 shows the problem solved. The solution was obtained
using 3D 8-node brick elements, with a mesh of 12 � 12 elements
in the cross-section and 10,000 element layers along the length.
This mesh results into 5,069,493 degrees of freedom. Fig. 4 gives
the solution times used.

Of course, this is a somewhat academic problem, but the solu-
tion times are interesting. In fact, Fig. 4 shows that the solution
times increase almost linearly with the number of calculated fre-
quencies and mode shapes.

4.2. Solution of wheel assemblage

Fig. 5 shows the wheel assemblage, which was modeled with
3D brick elements and shell elements, leading to a total of
2,441,812 degrees of freedom and about 5,000 contact segments.
Please cite this article in press as: Bathe K.J. The subspace iteration
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The solution times used to solve the model are given in Fig. 6.
Here we should also note that the solution times scale practically
linearly.
method – Revisited. Comput Struct (2012), http://dx.doi.org/10.1016/
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Fig. 6. Solution times for frequencies and mode shapes of the bolted wheel
assembly model.

Fig. 7. Coil and support structure of a plasma fusion device.

Fig. 8. Solution times for frequencies and mode shapes of the plasma fusion device
model.
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4.3. Solution of plasma fusion device

Fig. 7 shows the model of the plasma fusion device solved. This
model was presented and studied in Ref. [21] and is a valuable
Please cite this article in press as: Bathe K.J. The subspace iteration
j.compstruc.2012.06.002
model to identify the performance of the subspace iteration
method.

The finite element model of the coil and support structure re-
sults into 5,865,765 degrees of freedom using mainly 3D brick ele-
ments and about 120,000 contact segments.

Fig. 8 gives the solution times used. Here too we see approxi-
mately a linear increase in the solution times.
5. Concluding remarks

The objective in this paper was to present some recent develop-
ments regarding the subspace iteration method for the solution of
frequencies and mode shapes of structural systems. The paper can
be thought of as an addendum to the work published about 4 dec-
ades ago, in which the original development of the method was
presented [1].

We discussed in this paper that the use of an effective number
of iteration vectors q to find p eigenpairs is very important and we
established the simple formula that we are using at present. We
also briefly discussed the use of parallel processing. With these
schemes we gave some solution times and found that for the struc-
tural problems solved these times scaled, approximately, linearly
with the number of eigenpairs sought. Of course, the actual scaling
seen is in general problem-dependent.

Since the hardware environments for computations have im-
proved tremendously during the last decades, with regard to pro-
cessing speed and memory available, and solution requirements
in finite element analyses have greatly increased, it is only natural
that computational procedures, proposed some years ago, need to
be brought up to date for maximum efficiency – like addressed in
this paper for the subspace iteration method.
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