2.4.2.1 (1)
|
Using the default EN
|
2.4.2.2 (1)
|
When choosing the “Norwegian NS-EN NA method” the value partial factor for prestress action - favourable is given in the National Annex:
γP,fav = 0.9
|
2.4.2.2 (2)
|
When choosing the “Norwegian NS-EN NA method” the value partial factor for prestress action - unfavourable is given in the National Annex:
γP,fav = 1.3
|
2.4.2.4 (1)
|
Using the default EN
Fatigue is not implemented in SCIA Engineer
|
3.1.2 (2)P
|
When choosing the “Norwegian NS-EN NA method” the value of maximal concrete strength class is given in the National Annex:
For shear strength: Cmax = B65 (C60/75)
For other cases: Cmax = B95 (C95/110)
|
3.1.6 (1)P
|
When choosing the “Norwegian NS-EN NA method” the coefficient taking account of long term effects on the compressive strength and of unfavourable effects resulting from the way the load is applied is given in the National Annex:
αcc = 0.85
|
3.1.6 (2)P
|
When choosing the “Norwegian NS-EN NA method” the value of coefficient taking account of long term effects on the tensile strength and of unfavourable effects resulting from the way the load is applied is given in the National Annex:
αct = 0.85
|
3.2.2 (3)P
|
Using the default EN
|
3.2.7 (2)
|
When choosing the “Norwegian NS-EN NA method” the value of characteristic strain limit is given in the National Annex:
εud / εuk = 0.4
fyd conditions are not implemented in SCIA Engineer
|
3.3.4 (5)
|
Using the default EN
|
3.3.6 (7)
|
When choosing the “Norwegian NS-EN NA method” the value of characteristic strain limit is given in the National Annex:
εud / εuk = 0.4
fyd conditions are not implemented in SCIA Engineer
|
4.4.1.2 (3)
|
When choosing the “Norwegian NS-EN NA method” the values of minimum cover for pre-tensioned tendons may be modified by the National Annex:
if dg > 32 mm: cmin,b + 5 mm
|
4.4.1.2 (5)
|
When choosing the “Norwegian NS-EN NA method” the method for determination of the minimal concrete cover cmin,dur is given in the National Annex:
Table NA.4.4N and NA.4.5N are used:
Criterion
|
Exposure class according to Table 4.1
|
X0
|
XC1
|
XC2 XC3 XC4
|
XD1 XS1
|
XD2 XD3 XS2
|
XS3
|
Reinforcing steel
Design working life 50 years
|
cmin,b
|
15
|
25
|
40
|
40
|
50
|
Reinforcing steel
Design working life 100 years
|
cmin,b
|
25
|
35
|
50
|
50
|
60
|
Prestressing steel
Design working life 50 years
|
cmin,b
|
25
|
35
|
50
|
50
|
60
|
Prestressing steel
Design working life 100 years
|
cmin,b
|
35
|
45
|
60
|
60
|
70
|
|
4.4.1.2 (6)
|
Using the default EN
|
4.4.1.2 (7)
|
Using the default EN
|
4.4.1.2 (8)
|
Using the default EN
|
4.4.1.2 (13)
|
When choosing the “Norwegian NS-EN NA method” the values coefficients for increasing concrete cover for abrasion classes are given in the National Annex:
k1 = k2 = k3 = 0 mm
|
4.4.1.3 (1)P
|
Using the default EN
|
4.4.1.3 (3)
|
When choosing the “Norwegian NS-EN NA method” the values of accepted deviations for increasing of nominal concrete cover are given in the National Annex:
with special geometric control: Δcdev = 5 mm
without special geometric control: Δcdev = 10 mm
|
4.4.1.3 (4)
|
Using the default EN
|
5.2 (5)
|
Using the default EN
|
5.5 (4)
|
Using the default EN
|
5.8.3.1 (1)
|
When choosing the “Norwegian NS-EN NA method” the slenderness criterion where second order effects may be ignored is given in the National Annex:
λn ≤ λn,lim
where:
for compression members where the ends are braced and that do not
have transverse load: λn,lim = 13 ∙ (2- rm) ∙ Aφ
for compression members where one end is unbraced and for
compression members that have transverse load: λn,lim = 13 ∙ Aφ
where:
rm = M01 / M02 – ratio between numerically least and greatest first order end moments
if M02 < Nd ∙ h / 20, rm = 1
rm is positive when both end moments give tension on same side
Aφ = 1.25 / (1 + 0.2 ∙ φef) ≤ 1
λn = λ ∙ (n / (1 + 2 ∙ ka ∙ ω))1/2 … normalised slenderness
where:
λ = l0 / I … see clause 5.8.3.2
ka = (is / i)2
is … radius of gyration of the reinforcement
i … radius of gyration of uncracked concrete section
n = NEd / fcd ∙ Ac … relative axial force
ω = fyd ∙ As / fcd ∙ Ac … mechanical reinforcement ratio
|
5.10.2.1 (1)P
|
Using the default EN
|
5.10.2.1 (2)
|
Using the default EN
|
5.10.2.2 (5)
|
Using the default EN
|
5.10.3 (2)
|
Using the default EN
|
5.10.9 (1)P
|
Using the default EN
|
6.2.2 (1)
|
When choosing the “Norwegian NS-EN NA method” the values for calculation of shear resistance of members not requiring design shear reinforcement are given in the National Annex:
for dg < 16 mm: cRd,c = 0.15 / γC
for dg ≥ 16 mm: cRd,c = 0.18 / γC
for compression: k1 = 0.15
for tension: k1 = 0.30
νmin = 0.0035 ∙ k3/2 ∙ fck1/2
|
6.2.2 (6)
|
Using the default EN
|
6.2.3 (2)
|
When choosing the “Norwegian NS-EN NA method” the value of minimum angle between the concrete compression strut and the beam axis perpendicular to the shear force for non-compressed members is given in the National Annex:
In standard concrete:
θmin = 21.80 ° (cotg = 2.5)
In sections with significant axial tension (σct ≥ fctk,0,05)
θmin = 38.66 ° (cotg = 1.25)
The values of maximum angle are using the default EN
|
6.2.3 (3)
|
Using the default EN
|
6.2.4 (4)
|
When choosing the “Norwegian NS-EN NA method” the values for calculation to prevent crushing of the compression struts in the flange are given in the National Annex:
θmin,c = 21.80 ° (cotg = 2.5)
The values of minimum angle in tension and maximum angles are using the default EN
|
6.2.4 (6)
|
Using the default EN
|
6.4.3 (6)
|
Using the default EN
|
6.4.4 (1)
|
When choosing the “Norwegian NS-EN NA method” the values for calculation punching shear resistance of slabs and column bases without shear resistance are given in the National Annex:
for dg < 16 mm: cRd,c = 0.15 / γC
for dg ≥ 16 mm: cRd,c = 0.18 / γC
for compression: k1 = 0.10
for tension: k1 = 0.30
νmin = 0.0035 ∙ k3/2 ∙ fck1/2
|
6.4.5 (3)
|
When choosing the “Norwegian NS-EN NA method” the limitation for maximum shear resistance is given in the National Annex:
vRd,max = 0.4 ∙ ν ∙ fcd ≤ 1.6 ∙ vRd,c ∙ u1 / (β ∙ u0)
where vRd,c is without contribution of axial stress (i.e. k1σcp = 0)
|
6.5.2 (2)
|
Using the default EN
|
6.5.4 (4)
|
Using the default EN
|
7.2 (2)
|
Using the default EN
|
7.2 (3)
|
Using the default EN
|
7.2 (5)
|
Using the default EN
|
7.3.1 (5)
|
When choosing the “Norwegian NS-EN NA method” the values of maximal calculated crack width are given in the National Annex:
Table NA.7.1N is used
Load combination
|
Limiting value wmax
|
Load combination
|
Limiting value wmax
|
X0
|
Quasi-permanent
|
0.40
|
Frequent
|
0.30 ∙ kc
|
XC1, XC2, XC3, XC4
|
Quasi-permanent
|
0.30 ∙ kc
|
Frequent
|
0.20 ∙ kc
|
XD1, XD2, XS1, XS2
|
Quasi-permanent
|
0.30 ∙ kc
|
Frequent
|
0.20 ∙ kc
|
Quasi-permanent
|
Decompression
|
XD3, XS3
|
Frequent
|
0.30 ∙ kc
|
Frequent
|
Decompression
|
XSA
|
Frequent
|
0.30 ∙ kc
|
Frequent
|
Decompression
|
where:
kc = cnom / cmin,dur ≤ 1.3
|
7.3.4 (3)
|
Using the default EN
|
8.2 (2)
|
When choosing the “Norwegian NS-EN NA method” the value of coefficient for calculation minimum clear bar distance and value of minimal clear bar distance are given in the National Annex:
For bars in same layer: k1 = 2.0
For bars in different layer: k1 = 1.5
k2 = 5 mm
|
8.3 (2)
|
When choosing the “Norwegian NS-EN NA method” the values of minimum mandrel diameter of bars and wires for bends, hooks and loops are given in the National Annex:
ϕ ≤ 16 mm
|
4ϕ
|
16 mm < ϕ ≤ 32 mm
|
7ϕ
|
ϕ > 32 mm
|
10ϕ
|
Other values from table NA.8.1 are not implemented
|
9.2.1.1 (1)
|
Using the default EN
|
9.2.1.1 (3)
|
Using the default EN
|
9.2.1.2 (1)
|
Using the default EN
|
9.2.2 (5)
|
When choosing the “Norwegian NS-EN NA method” the formula for calculation minimum ratio of shear reinforcement is given in the National Annex:
ρw,min = (0.1 ∙ √fck) / fyk
|
9.2.2 (6)
|
When choosing the “Norwegian NS-EN NA method” the formula for calculation maximum spacing between shear assemblies is given in the National Annex:
sl,max = 0.60 ∙ h’ ∙ (1 + cot α)
where:
h’ is the distance of the centre of gravity of the tension and the compression reinforcement
|
9.2.2 (8)
|
When choosing the “Norwegian NS-EN NA method” the formula for calculation maximum transverse spacing of the legs in series is given in the National Annex:
st,max = h’ ≤ 600 mm
where:
h’ is the distance of the centre of gravity of the tension and the compression reinforcement
|
9.3.1.1(3)
|
Using the default EN
|
9.5.2 (1)
|
When choosing the “Norwegian NS-EN NA method” the value of minimum diameter of longitudinal reinforcement bar in column is given in the National Annex:
ϕmin = 10 mm
|
9.5.2 (2)
|
When choosing the “Norwegian NS-EN NA method” the formula for calculation minimum area of longitudinal reinforcement in column is given in the National Annex:
As,min = 0.2 ∙ Ac ∙ fcd / fyd ≤ 0.5 ∙ NEd / fyd ≤ 0.01 ∙ Ac
|
9.5.2 (3)
|
When choosing the “Norwegian NS-EN NA method” the formula for calculation maximum area of longitudinal reinforcement in column is given in the National Annex:
As,max = 0.08 ∙ Ac
|
9.5.3 (3)
|
When choosing the “Norwegian NS-EN NA method” the method for calculation maximum spacing of the transverse reinforcement along the column is given in the National Annex:
scl,tmax = min(15 ∙ ϕl; bmin; 400 mm)
where:
ϕl is minimum diameter of the longitudinal bars
bmin is the lesser dimension of the column
if Asl > 0.04 ∙ Ac or concrete strength class is B55 or greater:
scl,tmax is multiplied by factor 0.6
|
9.6.2 (1)
|
Using the default EN
|
9.6.3 (1)
|
When choosing the “Norwegian NS-EN NA method” the formula for calculation minimum area of horizontal reinforcement in wall is given in the National Annex:
for exterior walls:
As,hmin = max(0.25 ∙ As,v; 0.30 ∙ Ac ∙ fctm / fyk)
for interior walls:
As,hmin = max(0.25 ∙ As,v; 0.15 ∙ Ac ∙ fctm / fyk)
|
9.7 (1)
|
Using the default EN
|
12.3.1 (1)
|
Using the default EN
|
12.6.3 (2)
|
Using the default EN
|